肌电图信号可以通过机器学习模型用作训练数据,以对各种手势进行分类。我们试图制作一个模型,该模型可以将六个不同的手势分类为有限数量的样本,这些样本可以很好地概括为更广泛的受众,同时比较我们的功能提取结果对模型准确性的效果与其他更常规的方法(例如使用AR参数)在信号通道的滑动窗口上。我们诉诸于一组更基本的方法,例如在信号上使用随机界限,但是渴望在正在进行EMG分类的在线环境中展示这些力量,而不是更复杂的方法(例如使用傅立叶变换。为了增加我们有限的训练数据,我们使用了一种称为抖动的标准技术,在该技术中,以通道的方式将随机噪声添加到每个观察结果中。一旦使用上述方法生产了所有数据集,我们就进行了随机森林和XGBoost的网格搜索,以最终创建高精度模型。出于人类的计算机界面目的,高精度分类对于它们的功能特别重要,并且鉴于在大量的高量中积累任何形式的生物医学数据的困难和成本,具有低量工作的技术是有价值的具有较便宜的功能提取方法的高质量样品可以在在线应用中可靠地进行。
translated by 谷歌翻译
提出了联合学习(FL),以促进分布式环境中模型的培训。它支持(本地)数据隐私的保护,并使用本地资源进行模型培训。到目前为止,大多数研究一直致力于“核心问题”,例如机器学习算法对FL,数据隐私保护或处理客户之间不均匀数据分布的影响。此贡献锚定在实际的用例中,在这种情况下,FL将实际部署在生态系统的互联网中。因此,在文献中发现了一些流行的考虑之外,还需要考虑一些不同的问题。此外,引入了一种构建灵活和适应性的FL解决方案的体系结构。
translated by 谷歌翻译
联合学习的重要问题之一是如何处理不平衡的数据。该贡献引入了一种新型技术,旨在使用I-FGSM方法创建的对抗输入来处理标签偏斜的非IID数据。对抗输入指导培训过程,并允许加权联合的平均值,以更重要的是具有“选定”本地标签分布的客户。报告并分析了从图像分类任务,用于MNIST和CIFAR-10数据集的实验结果。
translated by 谷歌翻译